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1.0 INTRODUCTION

This report documents the results of research accomplished under Air

. Force Office of Scientific Research contract F49620-83-C-0145, "The

Influence of Specific Factors Affecting Spall in Explosively Loaded Soil,"

during the period 1 August 1983 through 31 January 1985. Applied Research
Associates, Inc. has written two previous AFOSR reports on the subject of

spall in soil (References 1 and 2). Spall in explosively loaded soil is

-" caused by tensile failure, i.e., loss of particle to particle contact

* resulting from dynamic tensile strain. A spalled soil particle undergoes

ballistic motion (-lg vertical acceleration) because the only significant

vertical force acting on it is the downward force of gravity. Spall most

frequently occurs at or near a free surface, but can also occur at a

considerable distance from a free surface if the proper dynamic tensile

" "strain conditions are present.

Reference 2 deals mainly with near surface soil spall due to airblast

-. loading, but also attempts to infer the shape and size of the spall zone due

to directly coupled energy from a near surface explosion, on the basis of

* . very limited field test measurements. At the request of the Civil

i iEngineering Research Division of the Air Force Weapons Laboratory
(AFWL/NTE), the current effort focused on spall in soil due to directly

" coupled energy from a near surface explosion. The directly coupled spall
"* problem has two parts. The first part concerns the shape and size of the

1 [ spall zone due to directly coupled energy from a near surface explosion.

The second part concerns the effect of directly coupled spall on the ground

shock signal beyond the spall zone. The research reported herein focused on
* -the first part; the shape and size of the directly coupled spall zone.

LA Previous attempts to deduce the shape and size of the directly coupled spall

, zone from test data (Reference 2) have yielded inconclusive results, because

". of the lack of a sufficient number of vertical velocity measurements

S. extending to an adequate depth directly beneath and at small horizontal

ranges from the explosion. The second part of the directly coupled spall

problem (far field waveform effects) was not addressed. This was because

,- the computational mesh size required to adequately model the directly

coupled spall zone material behavior was so small that the resulting

,-p.- ,
-. 1.
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computational grid size was too small to yield ground shock waveforms at

large distances beyond the directly coupled spall zone. Reflections from

artificial but necessary computational grid boundaries were another reason -.

for not calculating far field ground shock waveforms. The grid boundaries

were far enough from the directly coupled spall zone not to have any effect

on it, but not far enough from it to permit far field ground shock waveform

.. calculations.

The specific factors affecting spall in soil due to directly coupled

* energy from a near surface explosion studied in the current effort were:

1. Weapon yield

2. Soil hysteri si s

3. Site layering

Closed form solutions to two dimensional, intense stress wave

. propagation problems in soil, of the kind considered here, are all but
,* impossible, and numerical methods must be used. The production calculations

. were done on ARA's HP1000 computer rather than on the AFWL CRAY, to maintain

* a reasonable schedule. This decision did impact the project technically,

" because the version of the STEALTH computer code which resides on the ARA

HP1000 computer does not have a rezone/dezone option, due to limited storage

". capacity. This meant the calculations had to be accomplished in such a way

- as to avoid extreme distortion of the computational grid. This was

accomplished by defining the explosion source region at a late enough time

that it did not produce extreme distortion of the nearby soil grid, but at

.* some possible sacrifice of accuracy.

Section 2.1 of this report defines the directly coupled spall problem

"" in detail; Section 2.2 discusses the computational strategy employed; and

Section 2.3 presents and analyzes the results of the computer calculations.

Section 3 contains a summary of principal results and conclusions, and gives

recommendations for future research on the subject of soil spall.

2



" 2.0 DISCUSSION

2.1 Problem Definition

Spall, in the sense of a tensile failure at the end of a bar subjected

to an intense compression wave, or at the ground surface from an underground

burst, or on the back side of a concrete wall impacted by fragments has long

* been well known. These cases all fall within Rinehart's classic definition

m. of spall, i.e., "fracturing caused when a high intensity, transient stress

wave reflects from a free surface" (Reference 3). For a normally incident

- compression wave in elastic, single phase materials, fairly simple

relationships can be established to predict the initiation and location of

spall fractures. These relationships depend upon:

1. The resistance of the material to fracture

2. The magnitude and shape of incoming stress waves

The classic case of surface spall in rock directly above a contained

nuclear explosion occurred during the RANIER Event of Operation PLUMBBOB, a

* 1.7 Kt nuclear detonation 900 ft below the top of Ranier MWsa in Area 12 of

the Nevada Test Site, on September 19, 1957 fReferences 4 and 5). It was

- mRANIER ground shock data which prompted the still ongoing detailed study of

explosion-induced ground shock spall Reference 6). Figure 2.1 shows the

* surface vertical motion (recorded acceleration, and velocity obtained by

integrating the recorded acceleration) which occurred directly above the

RANIER detonation. Three distinct phases are evident in both the

acceleration and velocity curves:

1. an initial upward motion
2. a prolonged -Ig free-fall, or dwell, in this case of about 380

milliseconds duration, and

3. a sharp upward impact, or "rejoin"
- Perret postulated that the above curves describe the motion of a rock mass

- given initial upward momentum by the upward-propagating compressive stress

- wave generated by the weapon detonation, then separated from the rock mass

below by a distinct horizontal fracture, caused by the reflected tensile

" Twave propagating downward from the free surface. The separated mass then

undergoes "free" (ballistic) motion under the influence of gravity, until

impacting the rock mass below. Glasstone and Dolan (Reference 7) describe
spall from a shallow underground burst as follows:

3
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When a nuclear weapon is exploded under the ground, a sphere of
extremely hot, high-pressure gases, Including vaporized weapon
residues and rock, is formed. This is the equivalent of the fireball
in an air or surface burst. The rapid expansion of the gas bubble
initiates a ground shock wave which travels in all directions away
from the burst point. When the upwardly directed shock (compression)
wave reaches the earth's surface, it is reflected back as a
rarefaction (or tension) wave. If the tension exceeds the tensile
strength of the surface material, the upper layers of the ground will
spall, i.e., split off into more-or-less horizontal layers. Then, as
a result of the momentum imparted by the incident shock wave, these
layers move upward at a speed which may be about 150 (or more) feet
per second.

Spall-type ground motion has by no means been restricted to contained

detonations in competent rock. Numerous ground shock records have been

obtained in soil, for both contained and near-surface detonations, in which

the vertical ground motion has exhibited all three of the characteristic

spall features shown in Figure 2.1. Nor are such motions seen only near the

ground surface. There are, however, significant differences in waveform

detail between spall in soil and spall in rock.

Analyses of single and multiburst ground motion data from the MISERS

BLUFF Phases I and II high explosive experiments showed that spall phenomena

*due to pore air expansion were strongly evident in the near surface ground

motions immediately following local airblast effects. Measured ground

motions from the PRE-MULTIBURST Phases I and II and PRE-HYBRID GUST high

"* explosive experiments also contain similar spall features. The presence of

spall probably accounts for much of the failure of empirical superposition

*. procedures to correctly predict the frequency content and, in some cases,

the peak time domain amplitude and time of occurrence of the large upward

motion observed in ground motion records from multiburst explosions

(References 8 and 9). Table 2.1 summarizes available experimental spall

data from near surface U.S. chemical and nuclear explosions (Reference 2).

The quantities Rs and zs in Table 2.1 are defined in Figure 2.2 from

Reference 2.

Spall is one of the less well understood and more troublesome

mechanisms affecting explosive ground motion analysis and prediction. It is

an important consideration for the geophysical community in attempting to

differentiate between an explosion and an earthquake, or to describe an

V
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Spal 1 Arls
Reg ion Wing Region

z= depth of spall at specified -

range

z= maximum depth of spall
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Exact shape
uncertain in
Reference 2

FIGURE 2.2

Sketch of Typical Spall Regions
and Nomenclature
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explosion based on the characteristics of measured ground motion. It is

equally as important for the weapon effects community in attempting to

predict large yield effects from small yield tests, because late time spall

behavior is gravity dominated, but gravity is usually neglected in explosive

effects scaling. Uncertainties associated with spall arise in connection

* ~.with nuclear detonation detection/discrimination, ground motion frequency
analysis, yield scaling, HE/NE equivalence determination, and the use of

* superposition to calculate the resultant ground motion due to both airblast

and directly transmitted ground shock, as well as due to multiple explosions.

For a near surface burst, the problem is much more complex than for

classic one-dimensional spall. Near surface explosions generate various

types of waves which are reflected and refracted in layered geologies, and

cause complex wave interactions at the ground surface. In addition, both

" positive and negative local air pressures can augment or retard the spall

* process. Finally, geologic materials (particularly soils) are particulate,

multiphase, highly nonlinear, inelastic, nonhomogeneous, and often

anisotropic, particularly under the influence of tensile stress.

The definition of spall used here is a generalization of Rinehart's,

recognizing that spall in soil is simply loss of particle contact (tensile

m failure) under dynamic loading, followed by sudden contact reestablishment

(impact rejoin). Soil spall manifests itself as a prolonged -1g free fall,

followed by a sharp upward impact. Auld (Reference 2) used the following

criteria to determine from measured ground shock records whether spall had

m occurred:

1. -Ig (-0.5 to -2.0g) vertical acceleration dwell (>5 ms), which is

"* identifiable directly on a vertical acceleration record, or as the

slope of a vertical velocity record

2. identifiable impulsive rejoin signal on both the vertical and

horizontal acceleration records

3. rejoin amplitude (>0.05 m/s) observed on the vertical velocity

record

These criteria are similar to those utilized by previous investigators, but

with numerical values specified. They were used to assemble Table 2.1.

Auld, et al. (Reference 10) suggested that the zone of spalled

material surrounding a near-surface explosion can be considered to consist

U 9
;,
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of two parts: a bowl-shaped volume of material, designated the "coupled

spall region"; and a shallow extension of the basic spalled volume,
designated the "negative airblast wing region." Figure 2.2 illustrates

these two zones as they might occur from a typical near-surface detonation.

Any of the possible spall mechanisms or a combination of these mechanisms
may be responsible for the spall observed in the so called coupled spall

region, e.g., direct waves, head waves, reflected waves, or surface waves.
The problem addressed herein is to define the shape and extent of the

* spall zone due to directly coupled energy from a near surface explosion in

soil, as a function of explosion yield, soil hysteresis, and site layering.

The approach was to perform eight two-dimensional, axially symmetric

calculations, using the Lagranglan, explicit, dynamic finite difference
computer code, STEALTH (Reference 11). The input to seven of the eight
calculations was an initial kinetic energy source region distribution near
the surface of a soil halfspace, plus a nuclear surface airblast pressure

distribution. The input to the eighth calculation was an HE surface

airblast pressure distribution only, which is the conventional

representation of a near surface HE explosion. The results of the finite
difference calculations are presented in the form of velocity-time waveforms

and -1g dwell contours. Spall features, when present, have been identified
from the velocity waveforms. The shape and extent of the directly coupled

spall zone has been defined from the dwell contours. The identifiable
properties of the directly coupled spall zone are then related to the

* loading, material and site property parameters. An important feature of the
calculated results is that the directly coupled spall zone turned out to be

-T pear shaped.

2.2 Computational Strategy

Eight STEALTH calculations were performed to define the shape and

S-extent of the spall zone due to directly coupled energy from a near surface
explosion in soil, as a function of explosion yield, soil hysteresis, and
site layering. These calculations are summarized in Table 2.2. All eight
calculations were two dimensional and axially symmetric, and employed a

Lagrangian spatial grid and explicit time integration.
Attempts to initiate the calculations by depositing internal energy in

a few of the rectangular zones surrounding the origin at time zero failed

10 "
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TABLE 2.2

SUMMARY OF EIGHT DIRECTLY COUPLED SPALL CALCULATIONS

Run
Number Yield, MT Equation of State Layers Surface Loading

1 1.0 non-hysteretic 1 Speicher-Brode

2 2.0 non-hysteretic 1 Speicher-Brode

3 0.5 non-hysteretic 1 Speicher-Brode

4 1.0 hysteretic 1 Speicher-Brode

5 2.0 hysteretic 1 Speicher-Brode

6 0.5 hysteretic 1 Speicher-Brode

7 1.0 hysteretic 2 Speicher-Brode

8 1.0* non-hysteretic 1 AMCLOAD (HE)

*The conventional representation of a surface HE explosion involves

airblast only. Therefore no initial kinetic energy source region was used

in this calculation.

r. '
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due to large grid distortion, which stopped the calculation. Rezoning was

not possible with the version of STEALTH installed on the ARA HP1000

computer, due to limited storage capacity. In addition, the early time

directly coupled spall zone for these calculations was also somewhat

- rectangular, which seemed suspicious. Consequently, the velocity field at

I millisecond from a CRT 2 Kt alluvium cratering calculation, using the
arbitrary Lagrangian/Eulerian code CRALE (Reference 12) was spatially and

* temporally yield cube root scaled and used to initiate Runs 1 through 7 in

* Table 2.2. The CRT calculation (designated RI) had been initiated using the

state of the art Benchmark 3 (BM3) nuclear source developed by S3

Figure 2.3a shows the velocity field in the CRT source region at
1 millisecond. To increase the calculational time step in CRALE, CRT

*. perfomed a 2 to 1 dezoning of the entire grid at 1 millisecond. Figure
• 2.3b shows the velocity field in the CRT source region immediately after

dezoning. The yield cube root scaled finite difference grid used in the ARA

STEALTH calculations was superimposed on this modified CRALE grid. Figure

* 2.4 shows the yield cube root scaled velocity field used to start the ARA 1

-. Mt STEALTH calculations. The 1 Mt STEALTH grid was about the same size as

the dezoned CRALE grid in the horizontal direction, and about 4/3 as large
in the vertical direction. However, the STEALTH three point time domain

central differencing scheme has a higher order truncation accuracy than does -
. the CRALE two point time domain forward differencing scheme, and the higher

order accuracy of STEALTH should have offset, at least in part, any -

* detrimental effects the CRALE dezoning had on stress attenuation or spall

zone shape and size. For a detailed discussion of the accuracy of the CRT 2

*" Kt alluvium cratering calculation, see Reference 13.

A plot of peak vertical velocity along the center axis for Runs 3, 4,
and 5 is shown in Figure 2.5. This figure shows that the peak vertical

velocity on axis varied with yield cube root scaled depth in a manner
similar to that of empirical data for material with a comparable wavespeed

analyzed by Cooper in Reference 14. Reference 13 shows that the rate of

calculated peak stress attenuation is affected by source region waveform

details, especially rise time, as well as by geometric and material
behavior, and by numerical methods and zoning. The fact that the calculated

peak stress attenuation data from the current STEALTH spall calculation, for

12
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both non-hysteretic and hysteretic material, compare favorably with Cooper's

attenuation bounds from Reference 14 is cause to infer the reasonableness of

- CRT's R1 source region velocity field used to start the STEALTH spall

calculations.
The finite difference grid for all eight runs consisted of 1600 nodes,

arranged so that there were 39 zones in both the X and Y directions. A

* constant scaled zone size of 3 meters/Mt"/3 was used in both the X and Y

directions for the first 15 meters of the grid. An initial zone size of

3 meters/Mt 1/3 and a geometric progression of 1.09 were used to define the

remainder of the grid. The finite difference grid and the locations of the
velocity waveform target points are shown in Figure 2.6. The distance from

the origin corresponding to selected grid lines is given below.

COMPUTATIONAL GRID LINE LOCATIONS

I, J Z, m/mt I / 3

1 0

2 3

3 6

4 9
5 12

6 15
7 18

P 10 28.72

15 54.06

20 93.06

25 153.06

U 30 245.37

35 387.41

40 605.95
.-..

1 - range

J = depth

To simulate the nuclear surface airblast loading along the top

boundary of the grid for Runs 1 through 7, a Speicher-Brode airblast

17



.

Ln

LUJ

FIGUR 2.

STEALTH1[fl id I n Veoct Waefr Tage.it

Cfo il Mt Yiel

CMQ 1di 1111I I 18

--. 5l 111111. 1 1A I I

If ~ HI



"- function (Reference 15) was used. Because all the calculations were run

with axial symmetry, the Speicher-Brode airblast function was centered on

*the axis of symmetry and allowed to propagate outward to the edge of the

grid.

To use STEALTH to study spall a soil stress-strain relation with low

tensile stiffness was needed. Although spall is by nature a discontinuous

ll phenomenon, it was convenient if not absolutely necessary to use a

stress-strain relation which maintains continuity, i.e. which does not

• permit the material to fracture. This is because if two initially

coincident material points separate they probably will not rejoin, but
instead impact a zone boundary or another point. Describing this point or

- zone boundary impact process is beyond the capability of the STEALTH code.
Consequently, displacements were assumed to be single valued, strains were

related to displacement gradients, and stresses were expressed as functions
of strains. The stress-strain equations are given in Appendix A.

The method used to determine if a particular node was in a state of

spall was to check the vertical acceleration. If it was between -0.5 and
-2.0 g's, the node was defined to be in a spalled state. This criterion was

used to be consistent with the previously stated empirical spall criterion.

The total and the longest continuous spall times were recorded for each
-.' node. Contours of longest continuous spall (dwell) time were plotted to

define the shape and extent of the spall zone.
I. The first three calculations were run to determine the effect of

explosion yield on the characteristics of the directly coupled spall zone.
.- In all three calculations the axis of symmetry corresponded to the Y-axis,

the radial and bottom boundaries were defined to be rigid, and the surface
was defined as a pressure boundary. The Speicher-Brode airblast function

' °was used to compute the surface airblast pressure as a function of time.
The initial node spacing was determined from the 3 meter spacing used in the

- 1 Mt case, using cube root of yield scaling. The spacing in the 2.0 Mt

calculation was 3.8 meters, and for the 0.5 Mt case the spacing was 2.4

meters. The magnitude of the velocity field used to define the initial
kinetic energy was not changed; only the spatial placement of the velocity

vectors was affected. Time was also scaled. The reason for using such a
small yield range (0.5-2.0 Mt) was that gravity was kept constant,

independent of yield.

V.
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It was therefore anticipated that yield cube root scaling would not strictly

apply, and the purpose of the relatively small yield variation was to see a

what yield scaling law did apply. As it turned out, the yield scaling law
which applies for the yield employed is approximately cube root, and limited
computer resources prevented widening the yield range.

The fourth, fifth and sixth calculations were completed using the sane
initial velocity field, node spacing, yields, and boundary conditions as the
first three calculations. The only difference bewteen these and the first
three calculations was the material model used. In these calculations the

* original material model was modified to allow for hysteresis.
The seventh calculation was performed to see what influence a material

* layer interface would have on the directly coupled spall zone. A second
*layer was introduced at a depth of 223.60 meters (J = 29). The hysteretic

material model was used in both layers. In the upper layer the material
model was the same as the model used in Runs 4, 5, and 6. The second layer

* consisted of the sane material model, except with coefficients four times as
large as those in the first layer. The result of this change was to .

* increase the material wave speed from 2000 meters/second in the first layer
to 4000 meters/second in the second later. The material density and-
Poisson's ratio were kept the same for both layers.

The final calculation was a 1 Mt HE, 1 layer calculation using the -

* simple non-hysteretic material model. The boundary conditions and node
spacing were the same as in the previous 1 Mt calculations. The surface

* airblast loading pressure was computed using the CRALE HE subroutine AI4CLOAD
(an empirical fit to 14IDDLE GUST III airblast records) (Reference 16). The
purpose of this run was to see if the nature of spall due to a near surface
HE explosion differs substantially from that due to a near surface nuclear-

* explosion of the same yield. Since the conventional representation of a
surface HE explosion involves airblast only, the scaled CRT R1 initial
velocity vector field was not used in this calculaton.
2.3 Calculational Results

The criterion used to determine whether a node was in a state of spall
* was whether the vertical acceleration was between -0.5 g'ns and 2.0 g's. As

a means of graphically displaying the length of time each node was in spall,

20



a letter of the alphabet was used to represent each 0.010 second dwell

interval as follows:

Letter Dwell Time, Sec

"blanku less than 0.010

A 0.010 to 0.020

B 0.020 to 0.030

C 0.030 to 0.040
D 0.040 to 0.050

E 0.050 to 0.060

F 0.060 to 0.070

G 0.070 to 0.080

H 0.080 to 0.090

1 0.090 to 0.100
j greater than 0.100

These identifiers are plotted at the node locations, and the 10 msec dwell

contour drawn by eye. The region enclosed by the 10 msec dwell contour is

defined as the directly coupled spall zone.

Vertical velocity waveforms were also examined along a variety of

radials from the origin. In the velocity waveforms a -1g acceleration is

411i represented by a linear section in the waveform having a slope of -9.81

nm/sec 2.

The results from all eight calculations are presented in Appendix B.

. Note that Y is positive downward in all plots in Appendix B. Because of

noise resulting from large zone aspect ratios, only results from within the

first 30 I and J grid lines were examined. Appendix B is divided into four

parts. The results for the non-hysteretic material model are presented on

pages B-2 through B-I5. The results for the hysteretic material model and

one material layer are presented on pages B-16 through B-29. A comparison

of the results for the one megaton, non-hysteretic material model with one

layer (Run 1), the one megaton, hysteretic material model with one layer

(Run 4), and the the one megaton, hysteretic material model with two layers

(Run 7), is presented on pages B-30 through B-42. Pages B-43 and B-44 shows

selected results from the one megaton HE (AMCLOAD loading) calculation

(Run 8).
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The objective of these calculations was to evaluate the influence of
1) yield, 2) hysteresis, and 3) layering on directly coupled spall in a

.* numerical calculation. The influence of each of these variables on the

shape and size of the spall zone due to directly coupled energy from a near

surface explosion in soil is addressed below.

1. Yield--To examine the effect yield has on the directly coupled

spall zone a comparison of the results from the one megaton, two

megaton, and half megaton calculations was made. Figure 2.7 shows

the scaled directly coupled spall zones resulting from

calculations involving the non-hysteretic material model (Runs

1-3). The scaled directly coupled spall zones in non-hysteretic

material for all three yields are consistent in size, but pear

shaped, rather than bowl shaped. These pear shaped zones are

similar in shape to that of pressure bulbs (contours of maximum

principal stress) due to surface pressure applied over a circular

area on an elastic half space. Since a near surface explosion

also exerts intense pressure over a more or less circular area,

the pear shaped configuration of the directly coupled spall zones

appears reasonable, even though it departs from the bowl shaped

configuration characteristic of explosive craters. The maximum

directly coupled spall depth, which occurs on axis, is between 210

and 225 m/(Mt)I/3 . Except for a lip which roughly coincides

with the crater region, the directly coupled spall zone in non-

hysteretic material lies within a 60 degree cone with its apex at

the origin. (The cone directrices make a 30 degree angle with the *

grid centerline.) Figure 2.8 shows the scaled directly coupled

spall zones resulting from calculations involving the hysteretic
material model (Runs 4-6). The directly coupled spall zones in

hysteretic material, for all three yields, are also consistent in

size, and pear shaped. The maximum directly coupled spall depth,

which occurs on axis, is between 165 and 190 m/(Mt)1/3. There

is no directly coupled spall zone lip, as there was for the

non-hysteretic material, and the directly coupled spall zone In

hysteretic material lies within a 25 degree cone with its apex at

the origin.
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2. Hysteresis--The presence of hysteresis dramatically and

consistently reduces the size of the directly coupled spall zone,

as Figures 2.7 and 2.8 show. This suggests that a principal

mechanism of spall due to directly coupled energy from a near

*-"- surface explosion is tensile failure caused by late time release

of stored strain energy.

3. Layering--Figure 2.9 shows that the second, stiffer layer at

223.60 meter depth had no effect on the depth of directly coupled

spall on axis, in comparison with that for the hysteretic case

with only one layer, but did widen the angle of the cone within

which directly coupled spall occurred from 25 degrees to about 90

- "degrees.

The data on pages R-43 and B-44 show spall due to HE airhlast only.

The zone in which directly coupled spall occurred in Runs 1 through 7 shows

no spall in Run 8, indicating that the principal spall agent in Runs 1

through 7 was directly coupled energy, as intended. Since directly coupled

-spall does occur for near surface HE explosions, however, the lack of

M idirectly coupled spall in Run 8 also indicates the need for a better

theoretical representation of a near surface HE explosion.
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3.0 SUMMARY AND CONCLUSIONSu The purpose of this investigation was to evaluate the influence of

explosion yield, soil hysteresis, and site layering on the shape and size of

6.,e spall zone due to directly coupled energy from a near surface explosion

in soil. The investigation was done numerically on Applied Research

Associates' HPIO00 computer, using the Lagrangian, explicit dynamic finite

I. difference computer code, STEALTH. The most important result is the

observation that the computed directly coupled spall zone is pear shaped.

The directly coupled spall zone size scales consistently with the cube root

of ihe yield in the neighborhood of one megaton yield, and is dramatically

reduced by hysteresis. The presence of a hard layer in one calculation had

no effect on the maximum directly coupled spall depth on axis but did

increase the apex angle of the vertical cone within which directly coupled

spall occurred.

The calculations demonstrated conclusively that spall can be studied

numerically using the STEALTH computer code. A more extensive numerical

stuq, should now be accomplished on a large mainframe computer, in which

cratering and spall are investigated simultaneously. The purpose of such a

studjy would be to evaluate the influence of early time source region

details, and computational procedural details such as zone size, rezoning,

and time step. When the shape and size of the spall zone due to directly

coupled energy from a near surface explosion in soil has been well defined,

-E the same source can then be used with confidence to study spall effects on

ground shock waveforms well beyond the directly coupled spall zone.
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APPENDIX A

STRESS-STRAIN RELATIONS
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Non-Hysteretic Stress-Strain Relations

A simple tension-sensitive stress-strain relation in which one bulk

modulus is used for compression and another smaller bulk modulus is used in

tension was used as the material model. A constant material density and

Poisson's ratio were used in both compression and tension.

f --

3

4 - 6 /a qPm.

( "%
-0,A-

4"

3

p = 1760 KG/M3  El]

p -a + bg2  (P > 0) [2]

a ( < 0) [3)

d B =a+2bg (W > 0) (4] '1

a
S( < 0) [5)

d K B [61
v (1-CV)

2

A-2
-. 5 ~ SS * .

- -. -
*%. -**. * S.



The Shear Modulus is

*2G= 3K(1-2v) [8)

-: The Shear Failure surface is shown below. Shear failure surface

violations are corrected at constant p.

K Hysteretic Stress-Strain Relations

/"44m, eWfAx
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p =1760 KG/M3 19]

A > Pmax

p = ap + bp2[10]

"max '[1

"max =P [12]

"mm "a - max [13]
a2gmax

Pmi n =0 [14]

Vmin P " Pmax and Pmin 0

p = (a +2bu max)(P-Pmin) [15]

"min < p < Pmax and pmin < 0

P Pmrin + C(P-Pmin) + d(P.'Pmin) 2  [16]

where

(a+2bp ma)(Pmax-1"in ) Pa-m
d -mx mx m - mami [17]

(max-pml 2

2C "a~mn (a+2bp ( 18)
"lmax-lmin max

0 < p < "min

+ .!(P-mmn) £19) -
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5,

.5'

=a i n - [201

Pmn = P [21)

aP = Pmin [22)

The shear modulus is

'*' 2G = 3K(1-2v) [8)-. F -V+[81

The shear failure surface is shown below. Shear failure surface violations

are corrected at constant p.

.' Proof of Equations (17 and [18

The basic equation is

L -Pmin =C(P-uAmin) + d(P-Rmin) 2  [231

S-A-5



and the two conditions determining the constants c and d are

Pmax-Pmin = C(vmax-Pmin) + d(Pmax-Pmin)2 [24]

c + 2d(Mmax.min) = a + 2bimax [25]

::. If we set",

Pmax'Pmin = P [26)
a + 2bmax S [27)
I max'min = X [28]

Then Equations (241 and (251 can be written in the for

Xc + X2d = P (29]

c + 2Xd = S (30]

or
P

c + Xd = [31)

c + 2Xd = S (32]

Subtracting Equation [31] from Equation (32] yields -

P SX-PXd = S - .(" =

or) --
SSXP [33]

and Equation [32] then yields

c = S - 2Xd = S - 2(SX-P) 2P 34]X = r S[4

The slopes of the various branches of the p-p curve are as follows:
:.4

virgin compression:

B = a + 2b max  [35]

straight line unloading-reloading:
B * a + 2bImax [35)

A-6
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tension:a
B =8 [36]

parabolic unloading/reloading:

B a C + 2d(IA**Imin) [37)

The bulk modulus is

d K B (6]

Poisson's ratio is an assumed constant.

1 [7)
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